Difference between revisions of "Logistic regression"
Jump to navigation
Jump to search
m (→Ordered LR: fix typo) |
|||
Line 7: | Line 7: | ||
===Ordered LR=== | ===Ordered LR=== | ||
If the dependent variable is categorical and can be ordered in a meaningful way (e.g. ''Grade 1'', ''Grade 2'', ''Grade 3''), ''ordered logistic regression'' is used.<ref>Ordinal Logistic Regression | R Data Analysis Examples. UCLA. URL: [https://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/ https://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/]. Accessed on: March 24, 2018</ref> | If the dependent variable is categorical and can be ordered in a meaningful way (e.g. ''Grade 1'', ''Grade 2'', ''Grade 3''), ''ordered logistic regression'' is used.<ref>Ordinal Logistic Regression | R Data Analysis Examples. UCLA. URL: [https://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/ https://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/]. Accessed on: March 24, 2018</ref> | ||
==Convergence== | |||
If an individual predictor variable is ''not'' predictive (e.g. one pathologist never calls a diagnosis) the data has ''complete separation'' and will not converge. | |||
==GNU/Octave example== | ==GNU/Octave example== |
Revision as of 17:07, 8 April 2022
Logistic regression, abbreviated LR, is a type of curve fitting. It used for categorical dependent (outcome) variables. Examples of categorical dependent variables are: (1) pass/fail, (2) dead/alive.
Types of logistic regression
Multinomial LR
If the dependent variable is categorical and the categories are mutually exclusive (e.g. benign, suspicious, malignant, insufficient), multinomial logistic regression is used.
Ordered LR
If the dependent variable is categorical and can be ordered in a meaningful way (e.g. Grade 1, Grade 2, Grade 3), ordered logistic regression is used.[1]
Convergence
If an individual predictor variable is not predictive (e.g. one pathologist never calls a diagnosis) the data has complete separation and will not converge.
GNU/Octave example
% ------------------------------------------------------------------------------------------------- % TO RUN THIS FROM WITHIN OCTAVE % run logistic_regression_example.m % % TO RUN FROM THE COMMAND LINE % octave logistic_regression_example.m > tmp.txt % ------------------------------------------------------------------------------------------------- clear all; close all; % Data from example on 'Logistic regression' page of Wikipedia - https://en.wikipedia.org/wiki/Logistic_regression y = [ 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1 ]; x = [ 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50 ]; y=transpose(y); x=transpose(x); [theta, beta, dev, dl, d2l, gamma] = logistic_regression(y,x,1) % calculate standard error se = sqrt (diag (inv (-d2l))) % create array % [[ alpha se_alpha zvalue_alpha zvalue_alpha^2 P_Wald_alpha ] % [ beta_1 se_beta_1 zvalue_beta_1 zvalue_beta_1^2 P_Wald_beta_1 ] % [ beta_2 se_beta_2 zvalue_beta_2 zvalue_beta_2^2 P_Wald_beta_2 ] % [ ... ... ... ... ... ] % [ beta_n se_beta_n zvalue_beta_n zvalue_beta_n^2 P_Wald_beta_n ]] logit_arr=zeros(size(beta,1)+1,5); logit_arr(1,1)=theta; logit_arr(2:end,1)=beta; logit_arr(1:end,2)=se; logit_arr(1:end,3)=logit_arr(1:end,1)./logit_arr(1:end,2); % zvalue_i = coefficient_i/se_coefficient_i logit_arr(1:end,4)=logit_arr(1:end,3).*logit_arr(1:end,3); % zvalue_i^2 logit_arr(1:end,5)=1-chi2cdf(logit_arr(1:end,4),1) % Wald statistic is calculated as per formula in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065119/ % calculate the probability for a range of values studytime_arr= [ 1, 2, 3, 4, 5] len_studytime_arr=size(studytime_arr,2); % As per the manual ( https://www.gnu.org/software/octave/doc/v4.0.3/Correlation-and-Regression-Analysis.html ) GNU/Octave function fits: % logit (gamma_i (x)) = theta_i - beta' * x, i = 1 ... k-1 for ctr=1:len_studytime_arr P_logit(ctr)=1/(1+exp(theta-studytime_arr(ctr)*beta)); end % print to screen output P_logit logit_arr % create plot len_x = size(x,1) for ctr=1:len_x P_fitted(ctr)=1/(1+exp(theta-x(ctr)*beta)); end plot(x,y,'o') hold on; grid on; plot(x,P_fitted,'-') xlabel('Study time (hours)'); ylabel('Probability of passing the exam (-)');
See also
References
- ↑ Ordinal Logistic Regression | R Data Analysis Examples. UCLA. URL: https://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/. Accessed on: March 24, 2018